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Abstract 

It is proved that the group of covariance of a non-second quantized theory of scalar 
fields on Minkowski space is uniquely restricted to the causality group, constituted by 
the group of dilatations and by the orthochronous Poincar6 group, if certain causality 
requirements in field theory are assumed. 

1. Introduction 

E. C. Zeeman (1964) proved an interesting theorem stating that a causal 
relation among  points of  a Minkowski space implies Poincar6 covariance. 

More explicitly, Zeeman considers a (3 + 1)-dimensional Minkowski  
space M with metric tensor 

Q(x, x') = (x ~ - x'~ 2 - (x - x')  z (1.1) 

equipped with a partial ordering 
x < x'  (1.2) 

which states that an event at a point  x ~ M is causally related to an event 
at a point  x '  ~ M, when the separation is time-like 

Q(x, x') > 0 (1.3) 

and there is an ordering in time, e.g. 

x ~ < x '~  (1 .4 )  

Then, the largest group of  automorphisms of  M preserving relation (1.2) 
is uniquely restricted to the so-called causality group C which is constituted 
by the following groups of  transformations in M :  

(1) group of  dilatations D, i.e., the multiplicative group of  (positive) 
real numbers;  

(2) group of  homogeneous  or thochronous  Lorentz  transformations 
L I ' ;  

(3) group of  translations T. 
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It is the purpose of the present paper to show that an equivalent result 
occurs also for a non-second quantized field theory in Minkowski space. 
More explicitly we shall see that, if one associates fields ~b(x) to points 
x ~ M, certain causality requirements of field theories imply Poincar6 
covariance. 

In Section 2 we recall some basic facts and causal features of a scalar 
field theory covariant under the Poincar6 group; in Section 3 we introduce 
a scalar field theory covariant under an arbitrary group of automorphisms 
G of the Minkowski space, preserving the causal behavior; in Section 4 
we prove that the largest group of automorphisms G is then uniquely 
restricted to the causality group C; finally, in Section 5 we introduce some 
supplementary remarks and comments. 

2. Causal Features o f  a Poincard Covariant Scalar Field Theory 

Let us recall some basic facts of a theory of scalar fields ~v(x) as the 
Hilbert space Hr  of all smooth solutions of the Klein-Gordon equation 

([~+mZ)cp(x)=O, m > 0  (2.1) 

As is well known, fields ~o(x) can be decomposed into the independent 
sets of positive and negative frequency solutions 

cp-+(x) = (27r) -2 f dp exp (q:ipx) O(• ~ 3(p z - m2)~+-(p) (2.2) 

where ~+-(p) are infinitely continuously differentiable functions with 
compact support. 

Under a unitary irreducible representation R(A,a ) of the restricted 
Poincar6 group p+t in H~o, the fields ~o(x) transform covariantly according 
to 

R(A,,) q~(x) = ~o[(A, a) x] (2.3) 

The local propagator A(x) of the theory is a solution of the equation 

(F5 + m2)A(x) = 0 (2.4) 

and is uniquely determined by the conditions 

(2.5) A(0,x)=0, \ ax ~ Loo0 

A(x) enables us to solve the Cauchy or initial value problem of equation 
(2.1). Indeed, if the field 9~(x), together with its first time derivative ~(x), 
is known, then the field at arbitrary space-time points x' ~ M is given by 

q~(x') = f [A(x' - x)(o(x) - A(x' - x)99(x)1 dx (2.6) 

The above relation is usually generalized to an explicit Poincar6 covariant 
form by introducing a space-like surface % in M with unit normal nu(x ) 
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(F=0,1 ,2 ,3) .  Then, once 09(x) and n~(x)a~09(x) are known on co, the 
values of 09(x) at any later space-like surface is given by 

09(x') = f {A(x' - x) n u O, 09(x) - in, O" A(x '  - x)] q)(x)} de(x) (2.7) 

The field 09(x') constructed according to (2.6) or (2.7) preserves all the 
essential features and transformation properties of 09(x), and it will be 
called in the following the 'propagated field' of 09(x). 

Let us now recall the following causal features satisfied by the above 
field theory. 

(I) Localizability Condition 

This condition requires that the region where the solutions (2.1) do not 
vanish must be localized in space-time. 

The above condition can be expressed by assuming that the relation 
(Chandler, 1968, 1969) 

lim z" 09(~7) = 0 (2.8) 
T = c O  

is verified for every positive integer n and uniformly for any 2 on the 
complement of the domain 

V(~) = (2]2 = ~ct; Ke supp~, t real) (2.9) 

This implies the existence of positive numbers e, 3, 70 and a positive integer 
n such that (Chandler, 1968, 1969) 

3 
I09(27)1 < (1217)" (2 .10)  

for all 7 > 7 o and 2 in the complement of the cone with vertex at the origin 

v,(09) = (21121 < r  o r  1 2 t - '  - < r f o r  s o m e  ~ supp 09; t real r O) (2.1 1) 

where Ix] is the Euclidean distance 

Then the fields rapidly and uniformly collapse on V~(09) as 7 ~ oo and we 
can say that 09(x) is confined to the region 

V~(09; 7) = (x lx  = 27; 2 e V~(09), 7 real) (2.12) 

Localizability condition is one of the basic requirements of any causal 
field theory, since it allows the same distinction between ingoing and 
outgoing waves. In our case, conditions (2.8) or (2.10) are satisfied by 
solutions of the form (2.2) (Chandler, 1968, 1969). 

(II) Causal Way of  Propagation 

This condition requires that if a field 09(x), together with its first time 
derivative, is confined to a finite region of space at a given time, then the 

16 



236 P. ROMAN AND R. M. SANTILLI 

propagated field q~(x') must be localized too in a finite region of space 
(Helgewood, 1962). 

In order to c!arify this requirement, let us consider only positive frequency 
solutions ~+(x) of (2.1). Then (2.6) becomes 

~+(x') = f [~ +(x' - x ) ~ + ( x )  - A + ( x  ' - x ) ~ ( x ) l  dx (2.13) 

where, as usual, A+(x) comes from the decomposition 

d(x) = A+(x) + A-(x) (2.14) 

As an example of solutions of (2.1) which is completely localized at the 
origin at the time x ~ = 0 we assume 

q)(0, x) = ~(x), ~b(0, x) = 0 (2.15) 

Then, by substituting in (2. I4) we have 

q~(x') = - [OA +(x~' --  x)~ (2.16) 
\ Ox ~ ]xo=0,x=0 

which shows that the propagated field ~(x') does not longer vanish outside 
of a finite region of space on account of the fact that A +(x) does not satisfy 
properties (2.5) of A(x). 

The formulae for propagated fields are also interpreted as expressing the 
way according to which fields develop in the course of time (Helgewood, 
1962). Then field (2.15), propagated according to (2.16), is said to spread 
with infinite velocity, while a causal way of propagation requires that the 
velocity of propagation of the fronts must be bounded by the velocity of 
light. 

Thus, a scalar field theory constituted of  only positive frequency solutions 
(or equivalently of only negative frequency solutions) of (2.1) possesses an 
acausal way of propagation (Hilgewoord, 1962). On the contrary, the full 
solutions ~(x), propagated according to (2.6) or (2.7) possess a causal way 
of  propagation on account of properties (2.5) of the propagator A(x). 

(III) Time Ordering 
A succession of  events at points x, x', x " , . . . E M  can be assumed either 

with time ordering x ~ 1 7 6 1 7 6  or with the inverse ordering 
x ~  ~ 1 7 6  .... Causal theories can be constructed either with a 
given ordering in time or with its inverse. However, the same definition 
of cause and effect requires the assumption of a fixed ordering in time. In 
field theories, this assumption allows the very definition of ingoing and 
outgoing waves. 

3. Causal Field Theory Covariant Under an Arbitrary Group 

The purpose of this section is to introduce a scalar field theory covariant 
under an arbitrary group, but preserving the causal features pointed out 
in the preceding section. 
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Let us introduce first the following basic assumptions: 

(a) We work in a (3 + 1)-dimensional Minkowski space Mwi th  metric 
tensor (1.1), equipped with a group of automorphisms G. 

(b) Let He be the Hilbert space of smooth (in the meaning of Section 2) 
'fields' r with x e M, solutions of  a linear second-order 
differential equation 

(D (2) +/z 2) ~b(x) = 0, /z > 0 (3.1) 

and transforming covariantly under a unitary representation To 
of G in H~ for any g s G, according to 

r o ~(x) = q,(gx) (3.2) 

(c) Corresponding to any field ~b(x) ~ H~, we assume the existence of  
a propagated field ~b(x')~ H~, with x ' e  M, preserving all the 
essential features and transformations properties of ~(x). 

We realize requirement (c) by assuming that, as a Cauchy value problem 
of (3.1), when a field ~b(x) and its first time derivative ~(x) are known, then 
the field at an arbitrary point x' e M is given by a kernel dependent relation 
that we write symbolically 

~(x') -- f F[k(x' ,  x), ~(x), ~(x)] dx (3.3) 

Let us note that assumptions (a), (b) and (c) do not imply Poincar6 
covariance and our field theory is largely arbitrary on account of the 
arbitrariness of the group of automorphisms G of M. 

Now we restrict our field theory with the following causality conditions. 

(I) Localizability Condition 

As pointed out in Section 2, we assume that the fields ~b(x) vanish outside 
of a localized region in space-time, and we express this condition by 
requiring that for every positive integer n 

lim ~ ~b(2~-) = 0 (3.4) 
~ '=o0 

uniformly for any 2 in the complement of the domain 

V(~) = (212 = Kt, ~cE supp~, t real) (3.5) 

where ~ is now the Fourier transform of ~b, or, equivalently, by assuming 
the existence of positive numbers e, 8, ~- and a positive integer n such that 

[~b(2r)l < (12lr)--- ~ (3.6) 

for all ~- > ~'0 and 2 in the complement of  the domain 

v~(4,)=(~l[~l ~ ;  or I~ t -~]  ~<eforsomeKEsupp~b; t r e a l r  (3.7) 

where Ix[ is the Euclidean distance. In this way we can say that the fields 
~b(x) are confined to the region 

V~(~b; T) = (x lx  = 2~-; ~ ~ V~(~); ~" real) (3.8) 
16" 
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(II) Causal Way of Propagation 
We assume that if a field ~(x), together with its first time derivative 

~(x) is confined to a finite region of M at a given time, then the velocity of 
propagation of its front is bounded by the velocity of light, in the meaning 
of Section 2. 

We call a field theory defined by assumptions (a), (b) and (c) a causal 
field theory when causality requirements (I) and (II) are satisfied. 

In our causal field theory we now introduce the following causal relation. 
We define a field at a point x E M to be causally related to a field at a point 
x' ~ M, and we write 

~(x) c~Sb(x' ) (3.9) 

if the following conditions hold: 

(i) the fields ~b(x) and ~b(x') satisfy causality conditions (I) and (II), 
and can be interrelated by a propagation equation of type (3.3); 

(ii) the separation is time-like 

Q(x, x') > 0 (3.10) 

(iii) there is an ordering in time, e.g. 

x ~ < x '~ 0.11) 

The above causal relation introduces supplementary restrictions in our 
field theory. Indeed, it introduces an ordering in time and restricts the 
evaluation of the fields at any points x and x' time-like separated. 

These restrictions are compatible with causality requirements (I) and 
(II). Indeed, relation c~ is compatible with condition (I), since it restricts 
only the intersection of the domains of localizability of ~b(x) and of ~b(x') 

T(x,x') = (V~(~b; z) N V~(~',~")lQ(x,x') > 0; x ~ < x'~ x ~ V~(~b; ~); 

x ' ~  V~(~b', ~-')) (3.12) 

to time-like separations and to the time ordering x ~ < x '~ without acting 
in each single domain. Similarly, relation ~ is compatible with condition 
(II), since the causal way of propagation must occur everywhere in Min- 
kowski space. 

Finally, we introduce the concept of causality group of our field theory. 
The group of automorphisms G of the Minkowski space M is said to 
preserve causality, and is called a causality group, if any unitary representa- 
tion T o of G, for any g ~ G, preserves relation off; that is if a field ~b(x) is 
causally related to a field ~b(x'), the same occurs for To~(x) and To~b(x'). 
On account of condition (i) of the causal relation, the above requirement 
implies that under any mapping 

x --->x' = gx, g ~ G (3.i3) 
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the fields remain causal. It also follows that, because of transformation 
property (3.2) and the composition law of group elements, any product of 
unitary representations Tg T o, Tg,..., with g, g', g".. .  ~ G, preserves relation 
5.  

4. Derivation of Poincard Covariance from Causality Requirements 

The crucial consequence of the above causality requirements and causal 
relation can be expressed by the following theorem. 

Theorem 
The largest covariance group G of scalar fields ~b(x), defined by assump- 

tions (a), (b) and (c) with arguments x on a Minkowski space M, is uniquely 
restricted to the causality group C, if the preservation of causal relation 
is assumed. 

We prove this theorem by introducing first some lemmas. 

Lemma 1 
The non-linear automorphisms of the Minkowski space Mwhich preserve 

causality condition (II) violate causality condition (I). 

Proof: The causal way of propagation, condition (II), performs a first 
strong restriction on the covariance group G. Indeed, for the maximal case 
of propagation at the velocity of light, the largest group of automorphisms 
of a Minkowski space preserving a light signal is the conformal group 
(Cunningham, 1910; Bateman, 1910). 

Consider now among the elements of the conformal group, the non- 
linear transformations given by the so-called accelerations 

x + bx 2 
x -+  x ' = g x  l + 2b, x~ + bZx2 (4.1) 

with 
0 < b <  oe; b Z = b u b ~ O ;  xZ~-xt~x# (4.2) 

These transformations violate the localizability conditions of the fields, 
i.e., causality requirement (I). Indeed, by applying the mapping (4.1) to 
condition (3.4) we have 

lim ~" r = r ( ~  lira r" r  (4.3) 
7 = o o  \ ~ /  T--~ o0 

Equivalently, by recalling that the right-band side of (3.6) satisfies the 
relation 

8 
= l i m ~  = 0 (4.4) ,=~lim (i2lr) . ,-,~ 12~'1 

we have under mapping (4.1) 

lim 3 3 ~ 1 " # 0  = l i m  = 
""~lg(2"r)l" "-'~ 1 2r+b22"r2 , 3 (4.5) 

+ 2b~ 2 ~ ~" + b 2 227 "2 
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by which the violation of (3.6) follows by recalling that this condition must 
be satisfied for all r > ~'0. 

We can thus say that although the causal way of propagation might 
admit some classes of non-linear automorphisms, these transformations 
are forbidden by the localizability condition of the fields. 

Let us now introduce the following supplementary relations. We define 
a field at a point x ~ M to be light-like related to a field at a point x' ~ M, 
and we write 

~b(x) ~t'~b(x') (4.6) 
if: 

(i) fields ~b(x) and ~b(x') satisfy causality conditions (1) and (I1), and 
can be interrelated by a propagation equation of type (3.3); 

(ii) the separation is light-like 

Q(x, x') = 0 (4.7) 

(iii) there is the ordering in time 

x ~ < x '~ (4.8) 

Finally we introduce relation c~ complementary to 

~b(x)~b(x') (4.9) 
if 

Q(x,x') < 0; x ~ < x '~ (4.10) 

and relation 5P complementary to 

~b(x) Cs ') (4.11) 
if 

Q(x, x') # O, x ~ < x '~ (4.12) 

where, always, fields ~b(x) and ~b(x') satisfy causality conditions (I) and (II) 
and can be interrelated by equations of type (3.3). 

Lemma 2 
The group of automorphisms G of M preserves relation ~ if and only if 

it preserves relation oW. 

Proof: We first note that if G preserves relation ~ and Sr then it preserves 
relation ~ and ~ too. Indeed, let us assume that ~b(x) C~b(x'), and that 
there exists a unitary representation 7"9 of G which produces the transition 
from the above relation to the new one Tg~b(x)CKTo~(x' ). But then there 
exist a unitary representation To-1 of G such that To_l~(gx ) = ~b(x) and 
To_l~b(gx' ) = ~b(x'). Then ~b(x)~b(x') in contrast with the assumption. 
A similar situation occurs for relations s162 and .LP. 

The lemma then follows from the complementarity of relations c~, c~, 
.L~ a, ~ .  Indeed, as for the corresponding geometrical case (Zeeman, 1964), 
relation ~b(x) ~b(x ')  implies 
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r (4.13) 
for some r such that Q(x,x")  = Q(x",x ')  = 0 and x ~ < x "~ < x '~ Thus, 
if G preserves relation ~ ,  then it preserves relation ~ and G2. 

Similarly, relation r GPr ') implies 

r162162 
r eYe(x") (4.14) 

for some r such that Q(x,x")  > O, Q(x' ,x")  > 0 x ~ < x "~ and x '~ < x "~ 
Thus, if G preserves relation s then it preserves relation g~ and ~'. Con- 
sequently, G preserves relation ~f if and only if it preserves relation ~g~ ~ 

The largest class of linear automorphisms of M preserving causal 
relations is now specified by the following lemma. 

Lemma 3 

The largest group of linear automorphisms G of the Minkowski space 
M preserving relation ~ is, modulo dilatations and preservation of time 
orderings, the group of all the isometries I ( M )  of M. 

Proof: Let us consider the domain of localizability of a couple of fields 
r and r 

V~(r r) = (x[x = 2r;  2 ~ V~(r r real) 

V~,(r = (x[x' = 2' r ' ; 2 ' e  V~,(~b); r '  real) (4.15) 

The introduction of the restrictive relation 

r s176 (4.16) 

induces a metric-dependent domain expressed by the light-cone 

O(x,x') = (G(~b, r) n G'(r  r ' ) lQ(x ,x ' )  = 0 

x e V~(~b; r); x' e V~,(r r') (4.17) 

Now, corresponding to any unitary representation T o of G preserving 
relation ~qa, i.e., such that 

T o r 1 6 2  (4.18) 

the elements g e G must transform the light-cone 0(x,x') into another 
light-cone O(xl, xl ' )  with xl = gx  and X,' = gx'. This implies that 

Q(gx, gx') = Q(x, x') (4.19) 

Lemma 3 then follows by recalling that, by definition (Helgason, 1959), 
the group of all linear transformations on M preserving the metric tensor 
Q is the group of all the isometries I ( M )  of M. 

Proof  o f  the Theorem 

From Lemma 1 it follows that the group of automorphisms G of the 
Minkowski space M, in its most general structure is constituted by the 
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group D of (positive) dilatation and by a (normal) subgroup A of linear 
transformations. From Lemmas 2 and 3 it follows that A is isomorphic, 
modulo the preservation of time ordering, to the group of all the isometries 
I (M)  of M. But I (M)  is given by the full Poincar6 group (Helgason, 1959) 

I (M)  = P = L • T (4.20) 

where L is the full homogeneous Lorentz group and • is the semidirect 
product. Then, the condition of time ordering restricts L to the ortho- 
chronous Lorentz group L]', and G becomes the causality group C. 

5. Concluding Remarks 

Let us recall that the Minkowski space M is a symmetric homogeneous 
admitting only one second-order differential operator invariant under the 
group of all isometries, given by the Laplace-Beltrami operator 

A =~ggO~'gt~X/gOV; /z,v = 0, 1,2,3 (5.1) 

where g = det(guv ) and gu~ = Q(Om 0~), while the algebra of all invariant 
differential operators in M consists of polynomials in A. 

Operator (5.1) coincides in our case with the usual Laplacian 

A -- [] = O~gt,~ O~ (5.2) 

on account of the fact that gu~ is independent of x, the space M being flat. 
We can thus say that the defining equation (3.1) of our theory of scalar 

fields uniquely reduces to equation (2.1) [particularly on account of the 
assumption on the order of (3.1)], when the covariance group of the theory 
is restricted to the preservation of causal relations. In this case the link 
between the group of automorphisms G of M and the Hilbert space H~ of 
our causal field theory is given by the Laplace-Beltrami operator of the 
space and the full theory of Poincar6 covariant scalar fields is recovered. 

For the above derivation of Poincar6 covariance from causality require- 
ments some assumptions less restrictive than (a), (b) and (c) of Section 3 
could also be considered. We quote, for instance: 

(1) the considered class of solutions of (3.1) could be enlarged; 
(2) the condition that (3.1) is a second-order differential equation 

could be generalized; 
(3) the condition that the function ~b is preserved after propagation 

(3.3) could be relaxed; 
(4) the propagation equation (3.3) could be generalized by introducing 

hypersurfaces in M; 
(5) the fields could be introduced in terms of transformation laws 

more general then (3.2), such as, for instance, 

Tg Tt(x) = A(x; g) }It(gx), g ~ G (5.3) 
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where (x) is a column vector with components ~b~(x), and A(x,g) 
is a non-singular operator satisfying the composition law 

A ( x ; y ) , A ( x ; y 2 ) = A ( x ; g l g 2 ) ; g l ,  g 2 ~ G  (5.4) 

in order to recover theories of vectorial and spinorial fields. 

Conceivably, the above generalizations should not essentially affect the 
proof  of the theorem, the only different result being constituted by the 
transition from the orthochronous Poincar6 group to its universal covering 
group when spinorial fields are recovered. 

On the contrary, the condition on the linearity of equation (3.1) seems 
to be essential on account of the small number of information that we have 
at the present time on causality in a non-linear theory. 

It is also interesting to note that the above derivation of Poincar6 co- 
variance from causality requirements in field theories is independent of 
whether ~b(x) is a classical field or a field in first quantization. This implies 
that causality requirements (I) and (II) and causal relations, which apply 
in classical and first quantum-mechanical field theories, lead to the deriva- 
tion of Poincar6 covariance in both cases. 

The extension of the above result to field theories in second quantization 
requires, however, specific supplementary investigations. Indeed, the same 
basic assumptions must be modified on account of the fact that the fields 
now become operator valued distributions. This opens the interesting 
problem of whether, and which, causality requirements in second quantized 
field theories are able to recover Poincar6 covariance. 
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